MathIsimple
Back to Linear Algebra

Linear Algebra Practice Set 2

2-3 Hours

8 challenging problems covering orthogonalization, linear systems, similarity, and inner product spaces

1Problem 1

Let xx be a non-zero real constant. Let A=(aij)n×nA = (a_{ij})_{n \times n} be an nn-th order matrix satisfying:

aii=1+x2a_{ii} = 1 + x^2 for all i=1,,ni = 1, \ldots, n

aj,j+1=xa_{j,j+1} = x for all j=1,,n1j = 1, \ldots, n-1

al,l1=xa_{l,l-1} = x for all l=2,,nl = 2, \ldots, n

All other elements are 0.

Prove that A=k=0nx2k|A| = \sum_{k=0}^{n} x^{2k}.

2Problem 2

Given vectors in R3\mathbb{R}^3:

(I): α1=(1,1,0)T,α2=(1,0,1)T,α3=(1,2,2)T\alpha_1 = (1, -1, 0)^T, \alpha_2 = (-1, 0, 1)^T, \alpha_3 = (1, 2, 2)^T

(1) Prove that vector group (I) is a basis of R3\mathbb{R}^3;

(2) Use the Gram-Schmidt orthogonalization method to transform basis (I) into an orthonormal basis (II);

(3) Find the transition matrix MM from basis (II) to basis (I).

3Problem 3

Let λ,μ\lambda, \mu be real constants. Solve the linear system:

{x1+x2+x3+x4=1x1+x2+λx3x4=1x1+λx2+x3+μx4=1λx1+x2+x3+x4=μ\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 + \lambda x_3 - x_4 = 1 \\ x_1 + \lambda x_2 + x_3 + \mu x_4 = 1 \\ \lambda x_1 + x_2 + x_3 + x_4 = \mu \end{cases}

4Problem 4

Let a,ba, b be real constants. It is known that matrix

A=(13123234a)A = \begin{pmatrix} 1 & -3 & 1 \\ 2 & -3 & 2 \\ -3 & 4 & a \end{pmatrix}

is similar to matrix B=(20002000b)B = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}.

(1) Find the values of aa and bb;

(2) Find an invertible matrix PP such that P1AP=BP^{-1}AP = B.

5Problem 5

Let m,n,pm, n, p be positive integers. Let AA be an m×nm \times n real matrix and BB be a p×np \times n real matrix.

Define W={AXRm:BX=0p}W = \{AX \in \mathbb{R}^m : BX = 0_p\}, where 0p0_p is the pp-dimensional zero column vector.

(1) Prove that WW is a subspace of Rm\mathbb{R}^m;

(2) If r((AB))=r1r\left(\begin{pmatrix} A \\ B \end{pmatrix}\right) = r_1 and r(B)=r2r(B) = r_2, find dim(W)\dim(W).

6Problem 6

Given the real quadratic form:

f(x1,x2,x3)=2x1x26x1x3+2x2x3f(x_1, x_2, x_3) = 2x_1x_2 - 6x_1x_3 + 2x_2x_3

Find the canonical form of this quadratic form, and determine its rank and positive index of inertia.

7Problem 7

(1) State the Frobenius inequality for ranks of three nn-th order matrices A,B,CA, B, C;

(2) Let AA be an nn-th order real matrix. Prove that:

2r(A2)r(A3)+r(A)2r(A^2) \leq r(A^3) + r(A)

2021r(A2)r(A2022)+2020r(A)2021 \cdot r(A^2) \leq r(A^{2022}) + 2020 \cdot r(A)

8Problem 8

(1) Let A,BA, B be nn-th order real symmetric matrices with AA positive definite. Prove that ABAB is diagonalizable;

(2) Let DD be an nn-th order real orthogonal matrix. Given that D+ED + E is invertible, prove that:

① The matrix equation D(E+X)=EXD(E + X) = E - X has a solution XX

② The solution XX in ① is a real skew-symmetric matrix