MathIsimple
Back to Linear Algebra

Linear Algebra Practice Set 3

2-3 Hours

8 challenging problems covering linear systems, similarity, quadratic forms, and matrix theory

1Problem 1

Let x,a,bx, a, b be real constants satisfying aba \neq b. Let A=(aij)n×nA = (a_{ij})_{n \times n} be an nn-th order matrix (n2)(n \geq 2) satisfying:

akk=xa_{kk} = x for all k=1,,nk = 1, \ldots, n

apq=aa_{pq} = a for all p,q=1,,np, q = 1, \ldots, n with p<qp < q

alm=ba_{lm} = b for all l,m=1,,nl, m = 1, \ldots, n with l>ml > m

Calculate the determinant A|A|.

2Problem 2

Given vectors in R3\mathbb{R}^3:

α1=(2,4,2)T,α2=(1,1,0)T,α3=(2,3,1)T,α4=(3,5,2)T\alpha_1 = (2, 4, 2)^T, \alpha_2 = (1, 1, 0)^T, \alpha_3 = (2, 3, 1)^T, \alpha_4 = (3, 5, 2)^T

Let L=L(α1,α2,α3,α4)L = L(\alpha_1, \alpha_2, \alpha_3, \alpha_4) be the subspace generated by these vectors.

(1) Prove that basis (I): α1,α2\alpha_1, \alpha_2 and basis (II): α3,α4\alpha_3, \alpha_4 are both bases of LL;

(2) Find the transition matrix from basis (II) to basis (I).

3Problem 3

Let λ\lambda be a real parameter. Solve the linear system:

{x1+x2x3=12x1+3x2+λx3=3x1+λx2+3x3=2\begin{cases} x_1 + x_2 - x_3 = 1 \\ 2x_1 + 3x_2 + \lambda x_3 = 3 \\ x_1 + \lambda x_2 + 3x_3 = 2 \end{cases}

4Problem 4

Let AA be a real matrix satisfying 6A3+11A26A+E=O6A^3 + 11A^2 - 6A + E = O.

(1) Find the eigenvalues of AA;

(2) Let Mk=Ak=(aij(k))M_k = A^k = (a_{ij}^{(k)}). Prove that limk+aij(k)\lim_{k \to +\infty} a_{ij}^{(k)} exists;

(3) Let M=limk+MkM = \lim_{k \to +\infty} M_k. Prove that MM is idempotent, i.e., M2=MM^2 = M.

5Problem 5

For the function space VV of x(0,1)x \in (0, 1), define addition and scalar multiplication as:

f+g=f(x)+g(x),kf=kf(x)f + g = f(x) + g(x), \quad kf = kf(x)

(1) Prove that functions of the form f(x)=ax+bexf(x) = ax + be^x form a subspace;

(2) Prove that f(x)=xf(x) = x and g(x)=x+exg(x) = x + e^x are linearly independent;

(3) Transform f(x)=xf(x) = x and g(x)=x+exg(x) = x + e^x into an orthonormal basis η1,η2\eta_1, \eta_2 of the Euclidean space with inner product (f,g)=01f(x)g(x)dx(f, g) = \int_0^1 f(x)g(x)\,dx.

6Problem 6

Given the quadratic form:

f(x1,x2,x3)=x1x2x1x3f(x_1, x_2, x_3) = x_1x_2 - x_1x_3

Find the canonical form of this quadratic form, its rank, and signature.

7Problem 7

For an m×nm \times n matrix AA with rmin(m,n)r \leq \min(m, n), prove that:

r(A)=rr(A) = r if and only if AA can be decomposed as A=i=1rαiβiTA = \sum_{i=1}^{r} \alpha_i\beta_i^T, where α1,,αr\alpha_1, \ldots, \alpha_r and β1,,βr\beta_1, \ldots, \beta_r are linearly independent column vectors.

8Problem 8

(1) Let AA be an nn-th order real symmetric matrix and BB be an nn-th order positive definite matrix. Prove that the eigenvalues of ABAB are all real;

(2) Let A,BA, B be real matrices satisfying A1+B1=(A+B)1A^{-1} + B^{-1} = (A + B)^{-1}. Prove that (AB1)3=E(AB^{-1})^3 = E.