MathIsimple
Back to Linear Algebra

Linear Algebra Practice Set 4

2-3 Hours

8 challenging problems covering determinants, subspaces, quadratic forms, and matrix decomposition

1Problem 1

Given the determinant:

D=a1+xa2ana1a2+xana1a2an+xD = \begin{vmatrix} a_1+x & a_2 & \cdots & a_n \\ a_1 & a_2+x & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_n+x \end{vmatrix}

Prove that: D=xn1(x+i=1nai)D = x^{n-1}\left(x + \sum_{i=1}^{n} a_i\right)

2Problem 2

Given vectors in R3\mathbb{R}^3:

α1=(2,4,2)T,α2=(1,1,0)T,α3=(2,3,1)T,α4=(3,5,2)T\alpha_1 = (2, 4, 2)^T, \alpha_2 = (1, 1, 0)^T, \alpha_3 = (2, 3, 1)^T, \alpha_4 = (3, 5, 2)^T

These generate a subspace L(α1,α2,α3,α4)L(\alpha_1, \alpha_2, \alpha_3, \alpha_4).

(1) Prove that basis (I): α1,α2\alpha_1, \alpha_2 is a basis of LL; and basis (II): α3,α4\alpha_3, \alpha_4 is also a basis of LL;

(2) Find the transition matrix from basis (II) to basis (I).

3Problem 3

Let λ\lambda be a real parameter. Solve the linear system:

{x1+x2x3=12x1+3x2+λx3=3x1+λx2+3x3=2\begin{cases} x_1 + x_2 - x_3 = 1 \\ 2x_1 + 3x_2 + \lambda x_3 = 3 \\ x_1 + \lambda x_2 + 3x_3 = 2 \end{cases}

4Problem 4

Let AA be a real matrix satisfying 6A3+11A26A+E=O6A^3 + 11A^2 - 6A + E = O.

(1) Find the eigenvalues of AA;

(2) Let Mk=Ak=(aij(k))M_k = A^k = (a_{ij}^{(k)}). Prove that limk+aij(k)\lim_{k \to +\infty} a_{ij}^{(k)} exists;

(3) When k+k \to +\infty, let M=limMkM = \lim M_k. Prove that MM is idempotent, i.e., M2=MM^2 = M.

5Problem 5

For the function space VV of x(0,1)x \in (0,1), define:

f+g=f(x)+g(x),kf=kf(x)f + g = f(x) + g(x), \quad kf = kf(x)

(1) Prove that functions f(x)=ax+bexf(x) = ax + be^x form a subspace;

(2) Prove that f(x)=x,g(x)=x+exf(x) = x, g(x) = x + e^x are linearly independent;

(3) Transform them into an orthonormal basis η1,η2\eta_1, \eta_2 with inner product (f,g)=01f(x)g(x)dx(f,g) = \int_0^1 f(x)g(x)\,dx.

6Problem 6

Given quadratic form: f(x1,x2,x3)=x1x2x1x3f(x_1,x_2,x_3) = x_1x_2 - x_1x_3

Find the canonical form, rank, and signature.

7Problem 7

For matrix Am×nA_{m\times n} with r(A)=rmin(m,n)r(A) = r \leq \min(m,n), prove:

r(A)=rA=i=1rαiβiTr(A) = r \Leftrightarrow A = \sum_{i=1}^r \alpha_i\beta_i^T

where α1,,αr\alpha_1,\ldots,\alpha_r and β1,,βr\beta_1,\ldots,\beta_r are linearly independent.

8Problem 8

(1) Let AA be nn-th order real symmetric, BB positive definite. Prove eigenvalues of ABAB are real;

(2) If A,BA,B satisfy A1+B1=(A+B)1A^{-1} + B^{-1} = (A+B)^{-1}, prove (AB1)3=E(AB^{-1})^3 = E.