MathIsimple
Formula Reference

Digital Characteristics Formulas

Comprehensive collection of essential formulas for digital characteristics including expectation, variance, covariance, moments, characteristic functions, and their properties

8 Categories52 Formulas
Mathematical Expectation
Fundamental formulas for mathematical expectation and its properties
6 formulas

Discrete Expectation

E[ξ]=k=1xkp(xk)E[\xi] = \sum_{k=1}^{\infty} x_k p(x_k)

ExpectedvaluefordiscreterandomvariablewithdistributionP(ξ=xk)=p(xk)Expected value for discrete random variable with distribution P(ξ = xₖ) = p(xₖ)

Continuous Expectation

E[ξ]=xp(x)dxE[\xi] = \int_{-\infty}^{\infty} x p(x) dx

Expectedvalueforcontinuousrandomvariablewithprobabilitydensityfunctionp(x)Expected value for continuous random variable with probability density function p(x)

General Form (Stieltjes Integral)

E[ξ]=xdF(x)E[\xi] = \int_{-\infty}^{\infty} x dF(x)

UnifiedformforbothdiscreteandcontinuousrandomvariablesusingdistributionfunctionF(x)Unified form for both discrete and continuous random variables using distribution function F(x)

Expectation of Function

E[g(ξ)]={kg(xk)p(xk)discreteg(x)p(x)dxcontinuousE[g(\xi)] = \begin{cases} \sum_k g(x_k) p(x_k) & \text{discrete} \\ \int_{-\infty}^{\infty} g(x) p(x) dx & \text{continuous} \end{cases}

Expectedvalueoffunctiong(ξ)ofrandomvariableξExpected value of function g(ξ) of random variable ξ

Linearity of Expectation

E[i=1nciξi+b]=i=1nciE[ξi]+bE\left[\sum_{i=1}^n c_i \xi_i + b\right] = \sum_{i=1}^n c_i E[\xi_i] + b

Linearcombinationspreserveexpectation(independencenotrequired)Linear combinations preserve expectation (independence not required)

Product of Independent Variables

If ξ1,,ξn independent, then E[ξ1ξn]=E[ξ1]E[ξn]\text{If } \xi_1, \ldots, \xi_n \text{ independent, then } E[\xi_1 \cdots \xi_n] = E[\xi_1] \cdots E[\xi_n]

ExpectationofproductequalsproductofexpectationsforindependentvariablesExpectation of product equals product of expectations for independent variables

Variance and Standard Deviation
Variance formulas and properties for measuring dispersion
6 formulas

Variance Definition

Var(ξ)=E[(ξE[ξ])2]\text{Var}(\xi) = E[(\xi - E[\xi])^2]

VarianceasexpectationofsquareddeviationfrommeanVariance as expectation of squared deviation from mean

Computational Formula

Var(ξ)=E[ξ2](E[ξ])2\text{Var}(\xi) = E[\xi^2] - (E[\xi])^2

MoreconvenientformulaforcalculatingvarianceMore convenient formula for calculating variance

Standard Deviation

σ(ξ)=Var(ξ)\sigma(\xi) = \sqrt{\text{Var}(\xi)}

Squarerootofvariance,havingsameunitsastherandomvariableSquare root of variance, having same units as the random variable

Variance of Linear Transformation

Var(aξ+b)=a2Var(ξ)\text{Var}(a\xi + b) = a^2 \text{Var}(\xi)

Translationdoesntaffectvariance,scalingaffectsquadraticallyTranslation doesn't affect variance, scaling affects quadratically

Variance of Sum

Var(i=1nξi)=i=1nVar(ξi)+21i<jnCov(ξi,ξj)\text{Var}\left(\sum_{i=1}^n \xi_i\right) = \sum_{i=1}^n \text{Var}(\xi_i) + 2\sum_{1 \leq i < j \leq n} \text{Cov}(\xi_i, \xi_j)

GeneralformulaforvarianceofsumincludingcovariancetermsGeneral formula for variance of sum including covariance terms

Variance of Independent Sum

If ξ1,,ξn independent, then Var(i=1nξi)=i=1nVar(ξi)\text{If } \xi_1, \ldots, \xi_n \text{ independent, then } \text{Var}\left(\sum_{i=1}^n \xi_i\right) = \sum_{i=1}^n \text{Var}(\xi_i)

VarianceisadditiveforindependentrandomvariablesVariance is additive for independent random variables

Covariance and Correlation
Measures of joint variability and linear dependence between variables
6 formulas

Covariance Definition

Cov(ξ,η)=E[(ξE[ξ])(ηE[η])]\text{Cov}(\xi, \eta) = E[(\xi - E[\xi])(\eta - E[\eta])]

MeasureshowtwovariablesjointlydeviatefromtheirrespectivemeansMeasures how two variables jointly deviate from their respective means

Computational Covariance

Cov(ξ,η)=E[ξη]E[ξ]E[η]\text{Cov}(\xi, \eta) = E[\xi\eta] - E[\xi]E[\eta]

MoreconvenientformulaforcalculatingcovarianceMore convenient formula for calculating covariance

Correlation Coefficient

ρ(ξ,η)=Cov(ξ,η)Var(ξ)Var(η)\rho(\xi, \eta) = \frac{\text{Cov}(\xi, \eta)}{\sqrt{\text{Var}(\xi) \cdot \text{Var}(\eta)}}

Standardizedmeasureoflineardependence,alwaysbetween1and1Standardized measure of linear dependence, always between -1 and 1

Covariance Properties

Cov(aξ+b,cη+d)=acCov(ξ,η)\text{Cov}(a\xi + b, c\eta + d) = ac \cdot \text{Cov}(\xi, \eta)

BilinearityofcovariancewithrespecttolineartransformationsBilinearity of covariance with respect to linear transformations

Bilinearity of Covariance

Cov(i=1mξi,j=1nηj)=i=1mj=1nCov(ξi,ηj)\text{Cov}\left(\sum_{i=1}^m \xi_i, \sum_{j=1}^n \eta_j\right) = \sum_{i=1}^m \sum_{j=1}^n \text{Cov}(\xi_i, \eta_j)

CovariancedistributesoversumsCovariance distributes over sums

Independence Condition

ξ and η independentCov(ξ,η)=0\xi \text{ and } \eta \text{ independent} \Rightarrow \text{Cov}(\xi, \eta) = 0

Independentvariablesareuncorrelated(conversenotgenerallytrue)Independent variables are uncorrelated (converse not generally true)

Important Inequalities
Fundamental probability inequalities involving expectations and variances
5 formulas

Markov Inequality

P(ξε)E[ξ]ε,ε>0P(|\xi| \geq \varepsilon) \leq \frac{E[|\xi|]}{\varepsilon}, \quad \varepsilon > 0

UpperboundfortailprobabilityusingfirstmomentUpper bound for tail probability using first moment

Chebyshev Inequality

P(ξE[ξ]ε)Var(ξ)ε2,ε>0P(|\xi - E[\xi]| \geq \varepsilon) \leq \frac{\text{Var}(\xi)}{\varepsilon^2}, \quad \varepsilon > 0

ProbabilityboundfordeviationfrommeanusingvarianceProbability bound for deviation from mean using variance

Cauchy-Schwarz Inequality

E[ξη]2E[ξ2]E[η2]|E[\xi\eta]|^2 \leq E[\xi^2] \cdot E[\eta^2]

FundamentalinequalityrelatingproductexpectationtosecondmomentsFundamental inequality relating product expectation to second moments

Jensen Inequality

If g(x) is convex, then g(E[ξ])E[g(ξ)]\text{If } g(x) \text{ is convex, then } g(E[\xi]) \leq E[g(\xi)]

RelatesfunctionofexpectationtoexpectationoffunctionforconvexfunctionsRelates function of expectation to expectation of function for convex functions

Hölder Inequality

E[ξη](E[ξp])1/p(E[ηq])1/q,1p+1q=1E[|\xi\eta|] \leq (E[|\xi|^p])^{1/p} (E[|\eta|^q])^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1

GeneralizationofCauchySchwarzinequalityforhighermomentsGeneralization of Cauchy-Schwarz inequality for higher moments

Moments and Generating Functions
Moment formulas and generating function properties
7 formulas

Raw Moments

mk=E[ξk],k=1,2,3,m_k = E[\xi^k], \quad k = 1, 2, 3, \ldots

kthmomentaboutorigink-th moment about origin

Central Moments

ck=E[(ξE[ξ])k],k=1,2,3,c_k = E[(\xi - E[\xi])^k], \quad k = 1, 2, 3, \ldots

kthmomentaboutthemeank-th moment about the mean

Moment Relationships

c1=0,c2=Var(ξ),m1=E[ξ]c_1 = 0, \quad c_2 = \text{Var}(\xi), \quad m_1 = E[\xi]

SpecialcasesoffirstandsecondmomentsSpecial cases of first and second moments

Skewness Coefficient

γ1=c3c23/2=E[(ξE[ξ])3](Var(ξ))3/2\gamma_1 = \frac{c_3}{c_2^{3/2}} = \frac{E[(\xi - E[\xi])^3]}{(\text{Var}(\xi))^{3/2}}

Measuresasymmetryofdistribution(γ1>0:rightskewed,γ1<0:leftskewed)Measures asymmetry of distribution (γ₁ > 0: right-skewed, γ₁ < 0: left-skewed)

Kurtosis Coefficient

γ2=c4c223=E[(ξE[ξ])4](Var(ξ))23\gamma_2 = \frac{c_4}{c_2^2} - 3 = \frac{E[(\xi - E[\xi])^4]}{(\text{Var}(\xi))^2} - 3

Measurespeakednessrelativetonormaldistribution(γ2>0:leptokurtic,γ2<0:platykurtic)Measures peakedness relative to normal distribution (γ₂ > 0: leptokurtic, γ₂ < 0: platykurtic)

Moment Generating Function

Mξ(t)=E[etξ],if existsM_\xi(t) = E[e^{t\xi}], \quad \text{if exists}

GeneratesallmomentsthroughderivativesatoriginGenerates all moments through derivatives at origin

MGF Moment Formula

If Mξ(t) exists, then E[ξk]=Mξ(k)(0)\text{If } M_\xi(t) \text{ exists, then } E[\xi^k] = M_\xi^{(k)}(0)

kthmomentequalskthderivativeofMGFevaluatedatzerok-th moment equals k-th derivative of MGF evaluated at zero

Characteristic Functions
Characteristic function definitions, properties, and applications
8 formulas

Characteristic Function Definition

fξ(t)=E[eitξ]=eitxdF(x),tRf_\xi(t) = E[e^{it\xi}] = \int_{-\infty}^{\infty} e^{itx} dF(x), \quad t \in \mathbb{R}

Fouriertransformofrandomvariable,alwaysexistsFourier transform of random variable, always exists

Discrete Characteristic Function

fξ(t)=k=1eitxkp(xk)f_\xi(t) = \sum_{k=1}^{\infty} e^{itx_k} p(x_k)

CharacteristicfunctionfordiscreterandomvariablesCharacteristic function for discrete random variables

Continuous Characteristic Function

fξ(t)=eitxp(x)dxf_\xi(t) = \int_{-\infty}^{\infty} e^{itx} p(x) dx

CharacteristicfunctionforcontinuousrandomvariablesCharacteristic function for continuous random variables

Linear Transformation

If η=aξ+b, then fη(t)=eitbfξ(at)\text{If } \eta = a\xi + b, \text{ then } f_\eta(t) = e^{itb} f_\xi(at)

CharacteristicfunctionunderlineartransformationCharacteristic function under linear transformation

Independence Property

If ξ1,,ξn independent and η=i=1nξi, then fη(t)=i=1nfξi(t)\text{If } \xi_1, \ldots, \xi_n \text{ independent and } \eta = \sum_{i=1}^n \xi_i, \text{ then } f_\eta(t) = \prod_{i=1}^n f_{\xi_i}(t)

CFofsumequalsproductofCFsforindependentvariablesCF of sum equals product of CFs for independent variables

Moment Generation from CF

If E[ξn]<, then E[ξk]=fξ(k)(0)ik,0kn\text{If } E[|\xi|^n] < \infty, \text{ then } E[\xi^k] = \frac{f_\xi^{(k)}(0)}{i^k}, \quad 0 \leq k \leq n

ExtractmomentsthroughderivativesofcharacteristicfunctionatoriginExtract moments through derivatives of characteristic function at origin

Inversion Formula

F(x2)F(x1)=limT12πTTeitx1eitx2itfξ(t)dtF(x_2) - F(x_1) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^T \frac{e^{-itx_1} - e^{-itx_2}}{it} f_\xi(t) dt

RecoverdistributionfunctionfromcharacteristicfunctionRecover distribution function from characteristic function

Fourier Inversion

If fξ(t)dt<, then p(x)=12πeitxfξ(t)dt\text{If } \int_{-\infty}^{\infty} |f_\xi(t)| dt < \infty, \text{ then } p(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} f_\xi(t) dt

DirectrecoveryofdensityfromcharacteristicfunctionDirect recovery of density from characteristic function

Common Distribution Parameters
Expectation and variance formulas for standard probability distributions
8 formulas

Bernoulli Distribution Ber(p)

E[ξ]=p,Var(ξ)=p(1p),f(t)=peit+(1p)E[\xi] = p, \quad \text{Var}(\xi) = p(1-p), \quad f(t) = pe^{it} + (1-p)

Singletrialsuccess/failurewithsuccessprobabilitypSingle trial success/failure with success probability p

Binomial Distribution B(n,p)

E[ξ]=np,Var(ξ)=np(1p),f(t)=(peit+(1p))nE[\xi] = np, \quad \text{Var}(\xi) = np(1-p), \quad f(t) = (pe^{it} + (1-p))^n

NumberofsuccessesinnindependentBernoullitrialsNumber of successes in n independent Bernoulli trials

Poisson Distribution P(λ)

E[ξ]=λ,Var(ξ)=λ,f(t)=eλ(eit1)E[\xi] = \lambda, \quad \text{Var}(\xi) = \lambda, \quad f(t) = e^{\lambda(e^{it} - 1)}

Rareeventswithrateparameterλ(meanequalsvariance)Rare events with rate parameter λ (mean equals variance)

Geometric Distribution Geo(p)

E[ξ]=1p,Var(ξ)=1pp2,f(t)=peit1(1p)eitE[\xi] = \frac{1}{p}, \quad \text{Var}(\xi) = \frac{1-p}{p^2}, \quad f(t) = \frac{pe^{it}}{1-(1-p)e^{it}}

NumberoftrialsuntilfirstsuccessNumber of trials until first success

Uniform Distribution U[a,b]

E[ξ]=a+b2,Var(ξ)=(ba)212,f(t)=eitbeitait(ba)E[\xi] = \frac{a+b}{2}, \quad \text{Var}(\xi) = \frac{(b-a)^2}{12}, \quad f(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}

Equalprobabilityoverinterval[a,b]Equal probability over interval [a,b]

Exponential Distribution Exp(λ)

E[ξ]=1λ,Var(ξ)=1λ2,f(t)=11itλE[\xi] = \frac{1}{\lambda}, \quad \text{Var}(\xi) = \frac{1}{\lambda^2}, \quad f(t) = \frac{1}{1 - \frac{it}{\lambda}}

Continuousanalogofgeometricdistribution(memorylessproperty)Continuous analog of geometric distribution (memoryless property)

Normal Distribution N(μ,σ²)

E[ξ]=μ,Var(ξ)=σ2,f(t)=eitμσ2t22E[\xi] = \mu, \quad \text{Var}(\xi) = \sigma^2, \quad f(t) = e^{it\mu - \frac{\sigma^2 t^2}{2}}

BellshapeddistributionwithlocationparameterμandscaleparameterσBell-shaped distribution with location parameter μ and scale parameter σ

Gamma Distribution Γ(α,β)

E[ξ]=αβ,Var(ξ)=αβ2,f(t)=(1itβ)αE[\xi] = \frac{\alpha}{\beta}, \quad \text{Var}(\xi) = \frac{\alpha}{\beta^2}, \quad f(t) = \left(1 - \frac{it}{\beta}\right)^{-\alpha}

GeneralizesexponentialdistributionwithshapeparameterαandrateparameterβGeneralizes exponential distribution with shape parameter α and rate parameter β

Multivariate Extensions
Extensions to multivariate case and joint characteristics
6 formulas

Joint Expectation

E[g(ξ,η)]={ijg(xi,yj)pijdiscreteg(x,y)p(x,y)dxdycontinuousE[g(\xi, \eta)] = \begin{cases} \sum_i \sum_j g(x_i, y_j) p_{ij} & \text{discrete} \\ \int\int g(x,y) p(x,y) dx dy & \text{continuous} \end{cases}

ExpectedvalueoffunctionoftworandomvariablesExpected value of function of two random variables

Covariance Matrix

Σ=E[(ξE[ξ])(ξE[ξ])],Σij=Cov(ξi,ξj)\boldsymbol{\Sigma} = E[(\boldsymbol{\xi} - E[\boldsymbol{\xi}])(\boldsymbol{\xi} - E[\boldsymbol{\xi}])'], \quad \Sigma_{ij} = \text{Cov}(\xi_i, \xi_j)

MatrixofcovariancesformultivariaterandomvectorMatrix of covariances for multivariate random vector

Multivariate Normal CF

fξ(t)=exp{itμ12tΣt}f_{\boldsymbol{\xi}}(\boldsymbol{t}) = \exp\{i\boldsymbol{t}'\boldsymbol{\mu} - \frac{1}{2}\boldsymbol{t}'\boldsymbol{\Sigma}\boldsymbol{t}\}

CharacteristicfunctionofmultivariatenormaldistributionCharacteristic function of multivariate normal distribution

Linear Transformation of Vector

If η=Aξ+b, then E[η]=AE[ξ]+b,Cov(η)=ACov(ξ)A\text{If } \boldsymbol{\eta} = \boldsymbol{A}\boldsymbol{\xi} + \boldsymbol{b}, \text{ then } E[\boldsymbol{\eta}] = \boldsymbol{A}E[\boldsymbol{\xi}] + \boldsymbol{b}, \quad \text{Cov}(\boldsymbol{\eta}) = \boldsymbol{A}\text{Cov}(\boldsymbol{\xi})\boldsymbol{A}'

MeanandcovarianceunderlineartransformationMean and covariance under linear transformation

Conditional Expectation

E[ηξ=x]={jyjP(η=yjξ=x)discreteypηξ(yx)dycontinuousE[\eta|\xi = x] = \begin{cases} \sum_j y_j P(\eta = y_j | \xi = x) & \text{discrete} \\ \int y p_{\eta|\xi}(y|x) dy & \text{continuous} \end{cases}

Expectedvalueofηgivenξ=xExpected value of η given ξ = x

Law of Total Expectation

E[η]=E[E[ηξ]]E[\eta] = E[E[\eta|\xi]]

ExpectationequalsexpectedvalueofconditionalexpectationExpectation equals expected value of conditional expectation

📐 Key Properties & Theorems

Essential properties and relationships for digital characteristics

Fundamental Properties

  • Linearity: E[aX + bY + c] = aE[X] + bE[Y] + c
  • Independence: E[XY] = E[X]E[Y] if X ⊥ Y
  • Variance scaling: Var(aX + b) = a²Var(X)
  • Covariance bilinearity: Cov(X+Y, Z) = Cov(X,Z) + Cov(Y,Z)

Key Relationships

  • Variance formula: Var(X) = E[X²] - (E[X])²
  • Correlation bound: |ρ(X,Y)| ≤ 1
  • Independence ⇒ uncorrelated: X ⊥ Y ⇒ Cov(X,Y) = 0
  • CF uniqueness: f(t) uniquely determines distribution

🎯 Enhance Your Learning

Apply these formulas with our comprehensive learning resources and interactive tools

Learn Theory

Master the theoretical foundations of digital characteristics and their applications.

Start Learning

Practice Problems

Test your understanding with comprehensive practice problems and detailed solutions.

Start Practice

Use Calculator

Calculate digital characteristics interactively with step-by-step solutions.

Start Calculating

Next Steps

Continue with mathematical statistics and statistical inference methods.

Continue Learning

Explore digital characteristics