MathIsimple
Statistics Formulas

Statistics Formula Reference

Complete collection of statistical formulas for descriptive statistics, probability, hypothesis testing, and statistical inference

Quick ReferencePractical ApplicationsClear Explanations

Quick Formula Reference

Essential statistical formulas for quick lookup and reference

Descriptive Statistics

Mean (Average)

xˉ=Σx/nx̄ = Σx / n

Sample Variance

s2=Σ(xxˉ)2/(n1)s² = Σ(x - x̄)² / (n-1)

Standard Deviation

s=(s2)s = √(s²)

Population Variance

σ2=Σ(xμ)2/Nσ² = Σ(x - μ)² / N

Probability Basics

Basic Probability

P(A)=favorableoutcomes/totaloutcomesP(A) = favorable outcomes / total outcomes

Complement Rule

P(A)=1P(A)P(A') = 1 - P(A)

Addition Rule

P(AB)=P(A)+P(B)P(AB)P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

Multiplication Rule

P(AB)=P(A)×P(BA)P(A ∩ B) = P(A) × P(B|A)

Normal Distribution

Z-Score

z=(xμ)/σz = (x - μ) / σ

Standard Normal PDF

φ(z)=(1/2π)×e(z2/2)φ(z) = (1/√2π) × e^(-z²/2)

Normal Distribution PDF

f(x)=(1/(σ2π))×e((xμ)2/2σ2)f(x) = (1/(σ√2π)) × e^(-(x-μ)²/2σ²)

Central Limit Theorem

xˉ N(μ,σ2/n)x̄ ~ N(μ, σ²/n)

Confidence Intervals

Mean (σ known)

xˉ±z(α/2)×(σ/n)x̄ ± z(α/2) × (σ/√n)

Mean (σ unknown)

xˉ±t(α/2)×(s/n)x̄ ± t(α/2) × (s/√n)

Proportion

p^±z(α/2)×(p^(1p^)/n)p̂ ± z(α/2) × √(p̂(1-p̂)/n)

Margin of Error

E=criticalvalue×standarderrorE = critical value × standard error

Probability Theory Fundamentals

Essential mathematical formulas for probability theory foundations and classical probability models

Probability Theory Formula Reference
Beginner to Intermediate
Comprehensive formulas for random experiments, events, conditional probability, independence, and Bernoulli models

Key Formulas:

ClassicalProbability:P(A)=A/ΩClassical Probability: P(A) = |A|/|Ω|

BayesTheorem:P(AB)=P(BA)P(A)/P(B)Bayes' Theorem: P(A|B) = P(B|A)P(A)/P(B)

AdditionRule:P(AB)=P(A)+P(B)P(AB)Addition Rule: P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

Independence:P(AB)=P(A)×P(B)Independence: P(A ∩ B) = P(A) × P(B)

Binomial:P(X=k)=C(n,k)pk(1p)(nk)Binomial: P(X=k) = C(n,k)p^k(1-p)^(n-k)

Applications:

Classical probability
Medical diagnosis
Quality control
Risk assessment

Distribution Families

Complete mathematical reference for probability distribution families and their properties

Common Distribution Families & Properties
Intermediate
Comprehensive formulas for binomial, Poisson, normal, gamma, chi-square, t-distribution, F-distribution, beta, and exponential family theory

Key Formulas:

Binomial:P(X=k)=C(n,k)pk(1p)(nk)Binomial: P(X=k) = C(n,k) p^k (1-p)^(n-k)

Poisson:P(X=k)=(λke(λ))/k!Poisson: P(X=k) = (λ^k e^(-λ)) / k!

Normal:f(x)=(1/(σ(2π)))exp((xμ)2/(2σ2))Normal: f(x) = (1/(σ√(2π))) exp(-(x-μ)²/(2σ²))

Gamma:f(x)=(λα/Γ(α))x(α1)e(λx)Gamma: f(x) = (λ^α/Γ(α)) x^(α-1) e^(-λx)

Chisquare:f(x)=(1/(2(n/2)Γ(n/2)))x(n/21)e(x/2)Chi-square: f(x) = (1/(2^(n/2)Γ(n/2))) x^(n/2-1) e^(-x/2)

Applications:

Probability modeling
Statistical inference
Parameter estimation
Distribution theory

Mathematical Statistics

Fundamental formulas for statistical inference and mathematical statistics theory

Population vs Sample
Beginner
Key formulas distinguishing population parameters from sample statistics

Key Formulas:

PopulationMean:μ=Σx/NPopulation Mean: μ = Σx / N

SampleMean:xˉ=Σx/nSample Mean: x̄ = Σx / n

PopulationVariance:σ2=Σ(xμ)2/NPopulation Variance: σ² = Σ(x-μ)² / N

SampleVariance:s2=Σ(xxˉ)2/(n1)Sample Variance: s² = Σ(x-x̄)² / (n-1)

StandardError:SE=s/nStandard Error: SE = s / √n

Applications:

Parameter estimation
Statistical inference
Sampling theory
Data analysis
Statistical Inference
Intermediate
Formulas for making inferences about populations from sample data

Key Formulas:

ConfidenceInterval:estimate±marginoferrorConfidence Interval: estimate ± margin of error

TestStatistic:(estimateparameter)/standarderrorTest Statistic: (estimate - parameter) / standard error

Pvalue:P(observingresultH0istrue)P-value: P(observing result | H₀ is true)

TypeIError:α=P(rejectH0H0true)Type I Error: α = P(reject H₀ | H₀ true)

TypeIIError:β=P(failtorejectH0H1true)Type II Error: β = P(fail to reject H₀ | H₁ true)

Applications:

Hypothesis testing
Confidence intervals
Decision making
Research methodology

Point Estimation Theory

Comprehensive formulas for estimation methods, efficiency theory, and statistical inference

Point Estimation & Cramér-Rao Theory
Advanced
Complete mathematical reference for estimation methods, Fisher information, Cramér-Rao bounds, and UMVUE theory

Key Formulas:

FisherInformation:I(θ)=E[(logp(X;θ)/θ)2]Fisher Information: I(θ) = E[(∂log p(X;θ)/∂θ)²]

CrameˊrRaoBound:Var[g^][g(θ)]2/(nI(θ))Cramér-Rao Bound: Var[ĝ] ≥ [g'(θ)]²/(nI(θ))

MLE:θ^=argmaxL(θ;x1,...,xn)MLE: θ̂ = arg max L(θ;x₁,...,xₙ)

MSEDecomposition:MSE[θ^]=Var[θ^]+Bias2[θ^]MSE Decomposition: MSE[θ̂] = Var[θ̂] + Bias²[θ̂]

MethodofMoments:θ^j=hj(an,1,...,an,k)Method of Moments: θ̂ⱼ = hⱼ(a_{n,1},...,a_{n,k})

Applications:

Optimal estimation
Efficiency analysis
UMVUE construction
Asymptotic inference

Sufficient & Complete Statistics

Essential formulas for sufficient statistics, complete statistics, and optimal estimation theory

Sufficient & Complete Statistics Theory
Advanced
Complete mathematical reference for sufficient statistics, factorization theorem, complete statistics, and UMVUE construction

Key Formulas:

FactorizationTheorem:p(x~;θ)=g(T(x~);θ)×h(x~)Factorization Theorem: p(x̃;θ) = g(T(x̃);θ) × h(x̃)

CompleteStatistic:Eθ[φ(T)]=0θPθ(φ(T)=0)=1θComplete Statistic: E_θ[φ(T)] = 0 ∀θ ⟹ P_θ(φ(T) = 0) = 1 ∀θ

RaoBlackwell:Var(E[φT])Var(φ)Rao-Blackwell: Var(E[φ|T]) ≤ Var(φ)

LehmannScheffeˊ:E[φS]isuniqueUMVUEifSsufficientcompleteLehmann-Scheffé: E[φ|S] is unique UMVUE if S sufficient complete

BasusTheorem:TVifTsufficientcomplete,VancillaryBasu's Theorem: T ⊥ V if T sufficient complete, V ancillary

Applications:

UMVUE construction
Optimal estimation
Information theory
Statistical sufficiency

Confidence Intervals & Interval Estimation

Essential formulas for confidence interval construction and interval estimation theory

Confidence Intervals Theory & Applications
Intermediate
Complete mathematical reference for interval estimation, pivotal quantities, and confidence interval construction methods

Key Formulas:

CoverageProbability:Pθθ[θ^L,θ^U]Coverage Probability: P_θ{θ ∈ [θ̂_L, θ̂_U]}

NormalMean(σknown):xˉ±uα/2×σ/nNormal Mean (σ known): x̄ ± u_{α/2} × σ/√n

NormalMean(σunknown):xˉ±tα/2(n1)×s/nNormal Mean (σ unknown): x̄ ± t_{α/2}(n-1) × s/√n

NormalVariance:[(n1)s2/χα/22(n1),(n1)s2/χ1α/22(n1)]Normal Variance: [(n-1)s²/χ²_{α/2}(n-1), (n-1)s²/χ²_{1-α/2}(n-1)]

PivotalQuantity:G(X~,θ)withknowndistributionPivotal Quantity: G(X̃,θ) with known distribution

Applications:

Parameter estimation
Hypothesis testing
Statistical inference
Quality control

Hypothesis Testing & Statistical Inference

Complete formulas for hypothesis testing, test statistics, decision rules, and GLRT methods

Hypothesis Testing Theory & Applications
Intermediate
Comprehensive formulas for statistical hypothesis testing, error analysis, and test construction methods

Key Formulas:

TypeIError:α(θ)=Pθ(X~DθΘ0)Type I Error: α(θ) = P_θ(X̃ ∈ D | θ ∈ Θ₀)

TypeIIError:β(θ)=Pθ(X~DˉθΘ1)Type II Error: β(θ) = P_θ(X̃ ∈ D̄ | θ ∈ Θ₁)

PowerFunction:g(θ)=Pθ(X~D)=1β(θ)Power Function: g(θ) = P_θ(X̃ ∈ D) = 1 - β(θ)

UTest:U=(Xˉμ0)/(σ/n) N(0,1)U-Test: U = (X̄ - μ₀)/(σ/√n) ~ N(0,1)

TTest:T=(Xˉμ0)/(S/n) t(n1)T-Test: T = (X̄ - μ₀)/(S/√n) ~ t(n-1)

ChisquareTest:χ2=(n1)S2/σ02 χ2(n1)Chi-square Test: χ² = (n-1)S²/σ₀² ~ χ²(n-1)

GLRT:λ(x~)=supΘL(θ)/sup0L(θ)GLRT: λ(x̃) = sup_Θ L(θ)/sup_Θ₀ L(θ)

Applications:

Statistical testing
Quality control
A/B testing
Medical research

Nonparametric Hypothesis Testing

Complete formulas for distribution-free statistical tests including sign tests, rank-based methods, and goodness-of-fit procedures

Nonparametric Testing Theory & Applications
Intermediate
Comprehensive formulas for distribution-free hypothesis testing, sign tests, rank-based methods, and independence analysis

Key Formulas:

SignTest:N+=I(Xi>t0)B(n,θ)Sign Test: N^+ = \sum I(X_i > t_0) \sim B(n, \theta)

WilcoxonRankSum:W=Ri,E[W]=n(m+n+1)2Wilcoxon Rank Sum: W = \sum R_i, E[W] = \frac{n(m+n+1)}{2}

ChisquareTest:χ2=(OiEi)2EiChi-square Test: \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}

KSTest:Dn=supxFn(x)F0(x)K-S Test: D_n = \sup_x |F_n(x) - F_0(x)|

Independence:Eij=ninjnIndependence: E_{ij} = \frac{n_{i\cdot} n_{\cdot j}}{n}

RunTest:E[R]=2n1n2n1+n2+1Run Test: E[R] = \frac{2n_1 n_2}{n_1 + n_2} + 1

Applications:

Robust testing
Small samples
Ordinal data
Distribution-free analysis

Bayesian Statistics & Inference

Complete formulas for Bayesian statistical inference including Bayes' theorem, conjugate priors, and posterior analysis

Bayesian Inference Theory & Applications
Intermediate to Advanced
Comprehensive formulas for Bayesian statistical analysis, prior-posterior relationships, and credible intervals

Key Formulas:

BayesTheorem:π(θx~)=p(x~θ)π(θ)/p(x~)Bayes' Theorem: π(θ|x̃) = p(x̃|θ)π(θ) / p(x̃)

BetaBinomial:Beta(a,b)+Binomial(n,x)Beta(a+x,b+nx)Beta-Binomial: Beta(a,b) + Binomial(n,x) → Beta(a+x, b+n-x)

GammaPoisson:Gamma(α,β)+Poisson(Σx)Gamma(α+Σx,β+m)Gamma-Poisson: Gamma(α,β) + Poisson(Σx) → Gamma(α+Σx, β+m)

NormalNormal:τn2=τ2+nσ2,μn=(τ2μ0+nσ2xˉ)τn2Normal-Normal: τₙ⁻² = τ⁻² + nσ⁻², μₙ = (τ⁻²μ₀ + nσ⁻²x̄)τₙ²

CredibleInterval:P(θ[θL,θU]data)=1αCredible Interval: P(θ ∈ [θ_L, θ_U] | data) = 1-α

PosteriorPredictive:p(zdata)=p(zθ)π(θdata)dθPosterior Predictive: p(z|data) = ∫ p(z|θ)π(θ|data)dθ

Applications:

Parameter estimation
Uncertainty quantification
Decision making
Machine learning

Coming Soon

Additional statistical formula collections are being developed

More Formulas Coming Soon
Advanced Probability Distributions
Intermediate
Coming Soon
Formulas for binomial, Poisson, exponential, and other key distributions

Key Formulas:

Binomial:P(X=k)=C(n,k)×pk×(1p)(nk)Binomial: P(X=k) = C(n,k) × p^k × (1-p)^(n-k)

Poisson:P(X=k)=(λk×e(λ))/k!Poisson: P(X=k) = (λ^k × e^(-λ)) / k!

Exponential:f(x)=λe(λx),x0Exponential: f(x) = λe^(-λx), x ≥ 0

Chisquare:χ2=Σ((OE)2/E)Chi-square: χ² = Σ((O-E)²/E)

Applications:

Probability modeling
Statistical testing
Quality control
Risk analysis
Regression Analysis Formulas
Advanced
Coming Soon
Formulas for linear regression, correlation, and model diagnostics

Key Formulas:

LinearRegression:y^=a+bxLinear Regression: ŷ = a + bx

Slope:b=Σ((xxˉ)(yyˉ))/Σ(xxˉ)2Slope: b = Σ((x-x̄)(y-ȳ)) / Σ(x-x̄)²

Correlation:r=Σ((xxˉ)(yyˉ))/(Σ(xxˉ)2Σ(yyˉ)2)Correlation: r = Σ((x-x̄)(y-ȳ)) / √(Σ(x-x̄)²Σ(y-ȳ)²)

Rsquared:R2=SSR/SSTR-squared: R² = SSR / SST

Applications:

Predictive modeling
Relationship analysis
Forecasting
Data science

📊 How to Use Statistical Formulas Effectively

Master statistical analysis with these formula application strategies and best practices

Understand Your Data

Identify the type of data (categorical, numerical), sample size, and distribution before selecting formulas.

Check Assumptions

Verify that your data meets the assumptions required for each statistical test or formula.

Interpret Results

Always interpret statistical results in the context of your research question and practical significance.

📚 Build Your Statistics Foundation

Start learning with our available statistics content while we develop more comprehensive formula collections

Learn Fundamentals

Master mathematical statistics fundamentals with our comprehensive learning materials.

Start Learning

Geometry Formulas

Explore our complete collection of geometry formulas and mathematical references.

Geometry Formulas

Use Calculators

Practice with interactive calculators to understand how formulas work in practice.

Try Calculators

Need to understand these formulas?