Essential formulas for convergence and asymptotic behavior
ForallcontinuitypointsxofF(x)For all continuity points x of F(x)ForallcontinuitypointsxofF(x)
RandomvariableconvergencethroughdistributionfunctionconvergenceRandom variable convergence through distribution function convergenceRandomvariableconvergencethroughdistributionfunctionconvergence
EquivalencebetweendistributionconvergenceandcharacteristicfunctionconvergenceEquivalence between distribution convergence and characteristic function convergenceEquivalencebetweendistributionconvergenceandcharacteristicfunctionconvergence
BinomialdistributionconvergestoPoissonwhennislargeandpissmallBinomial distribution converges to Poisson when n is large and p is smallBinomialdistributionconvergestoPoissonwhennislargeandpissmall
PoissondistributionbecomesapproximatelynormalforlargeparameterPoisson distribution becomes approximately normal for large parameterPoissondistributionbecomesapproximatelynormalforlargeparameter
IntegralconvergenceforboundedcontinuousfunctionsIntegral convergence for bounded continuous functionsIntegralconvergenceforboundedcontinuousfunctions
ProbabilityoflargedeviationsgoestozeroProbability of large deviations goes to zeroProbabilityoflargedeviationsgoestozero
Forconstants,distributionconvergenceequalsprobabilityconvergenceFor constants, distribution convergence equals probability convergenceForconstants,distributionconvergenceequalsprobabilityconvergence
SumruleforcombiningconvergencetypesSum rule for combining convergence typesSumruleforcombiningconvergencetypes
ProductruleforcombiningconvergencetypesProduct rule for combining convergence typesProductruleforcombiningconvergencetypes
ContinuousfunctionspreserveprobabilityconvergenceContinuous functions preserve probability convergenceContinuousfunctionspreserveprobabilityconvergence
ToolforverifyingprobabilityconvergenceusingmomentsTool for verifying probability convergence using momentsToolforverifyingprobabilityconvergenceusingmoments
SampleproportionconvergestopopulationproportionSample proportion converges to population proportionSampleproportionconvergestopopulationproportion
SamplemeanconvergesinprobabilitytopopulationmeanSample mean converges in probability to population meanSamplemeanconvergesinprobabilitytopopulationmean
VarianceconditionforweaklawoflargenumbersVariance condition for weak law of large numbersVarianceconditionforweaklawoflargenumbers
SamplepathconvergenceforalmostalloutcomesSample path convergence for almost all outcomesSamplepathconvergenceforalmostalloutcomes
StronglawforBernoullitrialsStrong law for Bernoulli trialsStronglawforBernoullitrials
NecessaryandsufficientconditionforstronglawNecessary and sufficient condition for strong lawNecessaryandsufficientconditionforstronglaw
StrengthorderingofdifferentconvergencetypesStrength ordering of different convergence typesStrengthorderingofdifferentconvergencetypes
NormalapproximationtobinomialdistributionNormal approximation to binomial distributionNormalapproximationtobinomialdistribution
ClassicalcentrallimittheoremforidenticaldistributionsClassical central limit theorem for identical distributionsClassicalcentrallimittheoremforidenticaldistributions
CentrallimittheoremexpressedintermsofsamplemeanCentral limit theorem expressed in terms of sample meanCentrallimittheoremexpressedintermsofsamplemean
GeneralconditionforCLT,whereBn2=∑Var(ξk)General condition for CLT, where B_n² = ∑Var(ξₖ)GeneralconditionforCLT,whereBn2=∑Var(ξk)
SufficientconditionforCLT(easiertoverifythanLindeberg)Sufficient condition for CLT (easier to verify than Lindeberg)SufficientconditionforCLT(easiertoverifythanLindeberg)
NormalapproximationformulaforbinomialprobabilitiesNormal approximation formula for binomial probabilitiesNormalapproximationformulaforbinomialprobabilities
FinitesumofprobabilitiesimpliesonlyfinitelymanyeventsoccurFinite sum of probabilities implies only finitely many events occurFinitesumofprobabilitiesimpliesonlyfinitelymanyeventsoccur
InfinitesumwithindependenceimpliesinfinitelymanyeventsoccurInfinite sum with independence implies infinitely many events occurInfinitesumwithindependenceimpliesinfinitelymanyeventsoccur
MaximuminequalityforindependentrandomvariablesMaximum inequality for independent random variablesMaximuminequalityforindependentrandomvariables
WeightedversionofKolmogorov′sinequalityWeighted version of Kolmogorov's inequalityWeightedversionofKolmogorov′sinequality
Necessaryandsufficientconditionsfora.s.convergenceof∑(ξn−Eξn),whereξn′=ξnI(∣ξn∣≤c)Necessary and sufficient conditions for a.s. convergence of ∑(ξₙ - Eξₙ), where ξₙ' = ξₙI(|ξₙ|≤c)Necessaryandsufficientconditionsfora.s.convergenceof∑(ξn−Eξn),whereξn′=ξnI(∣ξn∣≤c)
FundamentalprobabilityboundusingvarianceFundamental probability bound using varianceFundamentalprobabilityboundusingvariance