Comprehensive mathematical reference for probability distribution families with formulas, parameters, and statistical properties
Fundamental probability distributions with complete mathematical formulations
n ∈ {1,2,3,...}, p ∈ (0,1)
k ∈ {0,1,2,...,n}
λ > 0 (rate parameter)
k ∈ {0,1,2,...}
μ ∈ ℝ (mean), σ > 0 (standard deviation)
x ∈ ℝ
λ > 0 (rate parameter)
x ≥ 0
Specialized distributions for statistical inference and advanced modeling
α > 0 (shape), λ > 0 (rate)
x > 0
n ≥ 1 (degrees of freedom)
x > 0
n ≥ 1 (degrees of freedom)
t ∈ ℝ
m,n ≥ 1 (degrees of freedom)
x > 0
a,b > 0 (shape parameters)
0 < x < 1
f(x;θ) = c(θ) exp{Σⱼ Qⱼ(θ)Tⱼ(x)} h(x)
Normalizing constant
Ensures probability integrates to 1
c(θ) = 1/∫ exp{Σⱼ Qⱼ(θ)Tⱼ(x)} h(x) dx
Natural parameters
Transform original parameters to canonical form
η = Q(θ) maps parameter space to natural parameter space
Sufficient statistics
Capture all information about θ from data
T(x) = (T₁(x), T₂(x), ..., Tₖ(x))
Base measure
Reference measure independent of parameters
h(x) ≥ 0 for all x in support
f(x;η) = exp{η·T(x) - A(η)} h(x)
A(η) = log ∫ exp{η·T(x)} h(x) dx
Mathematical connections and transformations between distribution families
Γ(1, λ) = E(λ)
Exponential as special case of Gamma
Γ(n/2, 1/2) = χ²(n)
Chi-square as special case of Gamma
Γ(α₁,λ) + Γ(α₂,λ) = Γ(α₁+α₂,λ)
Additivity property
(X-μ)/σ ~ N(0,1)
Standardization
Σ(Xᵢ-μ)²/σ² ~ χ²(n)
Sum of squared standardized normals
X̄ ~ N(μ, σ²/n)
Sample mean distribution
t(n) = N(0,1)/√(χ²(n)/n)
t-distribution definition
F(m,n) = (χ²(m)/m)/(χ²(n)/n)
F-distribution definition
t²(n) = F(1,n)
Squared t is F with 1 numerator df
B(1,1) = U(0,1)
Uniform as special case of Beta
Y/(1-Y) ~ Z(a,b) if Y ~ B(a,b)
Beta to Fisher Z transformation
(n/m)F ~ Z(n/2,m/2) if F ~ F(n,m)
F to Fisher Z transformation
Mathematical formulas for computing distribution moments and shape measures
μ'₁ = E[X] (mean)
μ'₂ = E[X²]
μ'₃ = E[X³]
μ'₄ = E[X⁴]
μ₁ = 0 (by definition)
μ₂ = Var(X) (variance)
μ₃ = E[(X-μ)³] (skewness measure)
μ₄ = E[(X-μ)⁴] (kurtosis measure)
Skewness: γ₁ = μ₃/σ³
Kurtosis: γ₂ = μ₄/σ⁴
Excess kurtosis: γ₂ - 3
Coefficient of variation: CV = σ/μ
Use interactive calculators and practice problems to master distribution formulas