MathIsimple
Distribution Formulas

Distribution Families Formula Reference

Comprehensive mathematical reference for probability distribution families with formulas, parameters, and statistical properties

Complete ReferenceMathematical FormulasProperties & Applications

Basic Distribution Families

Fundamental probability distributions with complete mathematical formulations

Binomial Distribution B(n,p)
Discrete
Exponential Family

Key Formulas:

pmf:P(X = k) = C(n,k) p^k (1-p)^(n-k)
cdf:F(k) = Σ(i=0 to k) C(n,i) p^i (1-p)^(n-i)
mean:E[X] = np
variance:Var(X) = np(1-p)
mgf:M(t) = (1-p+pe^t)^n

Parameters:

n ∈ {1,2,3,...}, p ∈ (0,1)

Support:

k ∈ {0,1,2,...,n}

Poisson Distribution P(λ)
Discrete
Exponential Family

Key Formulas:

pmf:P(X = k) = (λ^k e^(-λ)) / k!
cdf:F(k) = e^(-λ) Σ(i=0 to k) λ^i / i!
mean:E[X] = λ
variance:Var(X) = λ
mgf:M(t) = exp(λ(e^t - 1))

Parameters:

λ > 0 (rate parameter)

Support:

k ∈ {0,1,2,...}

Normal Distribution N(μ,σ²)
Continuous
Exponential Family

Key Formulas:

pdf:f(x) = (1/(σ√(2π))) exp(-(x-μ)²/(2σ²))
cdf:F(x) = Φ((x-μ)/σ)
mean:E[X] = μ
variance:Var(X) = σ²
mgf:M(t) = exp(μt + σ²t²/2)

Parameters:

μ ∈ ℝ (mean), σ > 0 (standard deviation)

Support:

x ∈ ℝ

Exponential Distribution E(λ)
Continuous
Exponential Family

Key Formulas:

pdf:f(x) = λe^(-λx)
cdf:F(x) = 1 - e^(-λx)
mean:E[X] = 1/λ
variance:Var(X) = 1/λ²
mgf:M(t) = λ/(λ-t) for t < λ

Parameters:

λ > 0 (rate parameter)

Support:

x ≥ 0

Advanced Distribution Families

Specialized distributions for statistical inference and advanced modeling

Gamma Distribution Γ(α,λ)
Continuous

Mathematical Formulas:

pdf:f(x) = (λ^α/Γ(α)) x^(α-1) e^(-λx)
cdf:F(x) = γ(α, λx) / Γ(α)
mean:E[X] = α/λ
variance:Var(X) = α/λ²
mgf:M(t) = (λ/(λ-t))^α for t < λ

Key Properties:

  • Additivity: Γ(α₁,λ) + Γ(α₂,λ) = Γ(α₁+α₂,λ)
  • Special cases: Γ(1,λ) = E(λ), Γ(n/2,1/2) = χ²(n)
  • Conjugate prior for Poisson rate parameter
Parameters:

α > 0 (shape), λ > 0 (rate)

Support:

x > 0

Chi-Square Distribution χ²(n)
Continuous

Mathematical Formulas:

pdf:f(x) = (1/(2^(n/2)Γ(n/2))) x^(n/2-1) e^(-x/2)
cdf:F(x) = γ(n/2, x/2) / Γ(n/2)
mean:E[X] = n
variance:Var(X) = 2n
mgf:M(t) = (1-2t)^(-n/2) for t < 1/2

Key Properties:

  • Definition: Σᵢ₌₁ⁿ Xᵢ² where Xᵢ ~ N(0,1)
  • Additivity: χ²(n₁) + χ²(n₂) = χ²(n₁+n₂)
  • Non-central χ²: when Xᵢ ~ N(aᵢ,1), parameter λ = Σaᵢ²
Parameters:

n ≥ 1 (degrees of freedom)

Support:

x > 0

t-Distribution t(n)
Continuous

Mathematical Formulas:

pdf:f(t) = (Γ((n+1)/2))/(√(nπ)Γ(n/2)) (1+t²/n)^(-(n+1)/2)
cdf:F(t) = ∫₋∞ᵗ f(u) du (no closed form)
mean:E[T] = 0 (n ≥ 2)
variance:Var(T) = n/(n-2) (n ≥ 3)
mgf:Does not exist

Key Properties:

  • Definition: T = X/√(K/n) where X ~ N(0,1), K ~ χ²(n)
  • Symmetric around 0
  • Heavier tails than normal distribution
  • Limit: t(n) → N(0,1) as n → ∞
Parameters:

n ≥ 1 (degrees of freedom)

Support:

t ∈ ℝ

F-Distribution F(m,n)
Continuous

Mathematical Formulas:

pdf:f(x) = (Γ((m+n)/2))/(Γ(m/2)Γ(n/2)) (m/n)^(m/2) x^(m/2-1) (1+(m/n)x)^(-(m+n)/2)
cdf:F(x) = I(mx/(n+mx); m/2, n/2)
mean:E[F] = n/(n-2) (n > 2)
variance:Var(F) = (2n²(m+n-2))/(m(n-2)²(n-4)) (n > 4)
mgf:Does not exist in general

Key Properties:

  • Definition: F = (K₁/m)/(K₂/n) where K₁ ~ χ²(m), K₂ ~ χ²(n)
  • Reciprocal property: 1/F ~ F(n,m)
  • Quantile relation: F₁₋α(m,n) = 1/Fα(n,m)
  • Connection: t²(n) ~ F(1,n)
Parameters:

m,n ≥ 1 (degrees of freedom)

Support:

x > 0

Beta Distribution B(a,b)
Continuous

Mathematical Formulas:

pdf:f(x) = (Γ(a+b))/(Γ(a)Γ(b)) x^(a-1) (1-x)^(b-1)
cdf:F(x) = I(x; a, b) (regularized incomplete beta function)
mean:E[X] = a/(a+b)
variance:Var(X) = ab/((a+b)²(a+b+1))
mgf:Complex form involving hypergeometric functions

Key Properties:

  • Special case: B(1,1) = U(0,1)
  • Relationship to F: if X ~ B(a,b), then X/(1-X) ~ Fisher Z(a,b)
  • Conjugate prior for binomial probability parameter
  • Flexible shapes: uniform, U-shaped, bell-shaped
Parameters:

a,b > 0 (shape parameters)

Support:

0 < x < 1

Exponential Family Theory
Unified mathematical framework for many important statistical distributions

General Form:

f(x;θ) = c(θ) exp{Σⱼ Qⱼ(θ)Tⱼ(x)} h(x)

Components Breakdown:

c(θ)

Normalizing constant

Ensures probability integrates to 1

c(θ) = 1/∫ exp{Σⱼ Qⱼ(θ)Tⱼ(x)} h(x) dx

Qⱼ(θ)

Natural parameters

Transform original parameters to canonical form

η = Q(θ) maps parameter space to natural parameter space

Tⱼ(x)

Sufficient statistics

Capture all information about θ from data

T(x) = (T₁(x), T₂(x), ..., Tₖ(x))

h(x)

Base measure

Reference measure independent of parameters

h(x) ≥ 0 for all x in support

Canonical Form:

f(x;η) = exp{η·T(x) - A(η)} h(x)

Log-partition function:

A(η) = log ∫ exp{η·T(x)} h(x) dx

Important Properties:

Cumulant generating function: K(t) = A(η + t) - A(η)
Mean: E[T(X)] = ∇A(η)
Covariance: Cov[T(X)] = ∇²A(η)
Maximum likelihood estimator: closed form solution
Sufficient statistics: finite dimensional
Conjugate priors exist

Distribution Relationships

Mathematical connections and transformations between distribution families

Gamma Family

Γ(1, λ) = E(λ)

Exponential as special case of Gamma

Γ(n/2, 1/2) = χ²(n)

Chi-square as special case of Gamma

Γ(α₁,λ) + Γ(α₂,λ) = Γ(α₁+α₂,λ)

Additivity property

Normal Derivatives

(X-μ)/σ ~ N(0,1)

Standardization

Σ(Xᵢ-μ)²/σ² ~ χ²(n)

Sum of squared standardized normals

X̄ ~ N(μ, σ²/n)

Sample mean distribution

t and F Connections

t(n) = N(0,1)/√(χ²(n)/n)

t-distribution definition

F(m,n) = (χ²(m)/m)/(χ²(n)/n)

F-distribution definition

t²(n) = F(1,n)

Squared t is F with 1 numerator df

Beta and Related

B(1,1) = U(0,1)

Uniform as special case of Beta

Y/(1-Y) ~ Z(a,b) if Y ~ B(a,b)

Beta to Fisher Z transformation

(n/m)F ~ Z(n/2,m/2) if F ~ F(n,m)

F to Fisher Z transformation

Moment Formulas

Mathematical formulas for computing distribution moments and shape measures

Raw Moments
μ'ₙ = E[Xⁿ]

μ'₁ = E[X] (mean)

μ'₂ = E[X²]

μ'₃ = E[X³]

μ'₄ = E[X⁴]

Central Moments
μₙ = E[(X-μ)ⁿ]

μ₁ = 0 (by definition)

μ₂ = Var(X) (variance)

μ₃ = E[(X-μ)³] (skewness measure)

μ₄ = E[(X-μ)⁴] (kurtosis measure)

Standardized Moments
Dimensionless measures of distribution shape

Skewness: γ₁ = μ₃/σ³

Kurtosis: γ₂ = μ₄/σ⁴

Excess kurtosis: γ₂ - 3

Coefficient of variation: CV = σ/μ

🧮 Apply These Formulas

Use interactive calculators and practice problems to master distribution formulas

Interactive Calculator

Calculate probabilities and transform between distributions.

Try Calculator

Learn Theory

Understand the mathematical theory behind these distributions.

Learn More

Practice Problems

Test your understanding with practical exercises.

Practice Now

Need help understanding these formulas?