MathIsimple
Back to Articles
Integration Guide

Indefinite Integrals Guide

A compact roadmap of the most common techniques for computingf(x)dx\int f(x)\,dxwith examples and links to deeper articles.

Definition 0.1: Antiderivative and Indefinite Integral

A function FF is an antiderivative of ff on an interval ifF(x)=f(x)F'(x)=f(x)for all xx in the interval.

f(x)dx=F(x)+C\int f(x)\,dx = F(x)+C

The constant CC captures the family of antiderivatives.

Technique Index
1) Substitution: turn a composite into a simple integral.
2) Integration by Parts: product integrals viaudv=uvvdu\int u\,dv = uv - \int v\,du.
3) Rational Functions: partial fractions.
4) Trigonometric Integrals: identities and substitution.
What to Practice
Recognize patterns (chain rule reverse, product rule reverse).
Choose substitutions that simplify the differential.
Use algebraic simplification early (factor/expand if helpful).
Differentiate your answer to verify.
Example 1.1: Basic Pattern Recognition

Compute:(3x24x+1)dx\int (3x^2-4x+1)\,dx

=x32x2+x+C= x^3 - 2x^2 + x + C
Example 2.1: Substitution (u-substitution)

Compute:2x(x2+1)5dx\int 2x\,(x^2+1)^5\,dx

u=x2+1,  du=2xdxu=x^2+1,\;du=2x\,dx
2x(x2+1)5dx=u5du=u66+C=(x2+1)66+C\int 2x\,(x^2+1)^5\,dx = \int u^5\,du = \frac{u^6}{6}+C = \frac{(x^2+1)^6}{6}+C
Example 3.1: Integration by Parts

Compute:xexdx\int x e^x\,dx

u=x,  dv=exdx    du=dx,  v=exu=x,\;dv=e^x\,dx\;\Rightarrow\;du=dx,\;v=e^x
xexdx=xexexdx=xexex+C\int x e^x\,dx = x e^x - \int e^x\,dx = x e^x - e^x + C
Remark 0.2: Next Steps
For rational functions, see:Partial Fractions Method.
For trig techniques, see:Trigonometric Integrals, and for the advanced classification approach:Trigonometric Rational Integrals.